valuation map - определение. Что такое valuation map
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое valuation map - определение

Valuation domain; Center (valuation ring)

Business valuation         
PROCESS OF DETERMINING ECONOMIC VALUE OF AN OWNER'S INTEREST
Corporate valuation; Enterprise valuation; Marketability; Discount for lack of marketability; Total Beta
Business valuation is a process and a set of procedures used to estimate the economic value of an owner's interest in a business. Here various valuation techniques are used by financial market participants to determine the price they are willing to pay or receive to effect a sale of the business.
Madaba Map         
  • The mosaic in the process of being uncovered
  • Annotated reproduction of the Madaba Map <small>(19k×12.5k pixels)</small>
  • Jordan]] and a (nearly-obliterated) lion hunting a gazelle
6TH-CENTURY MOSAIC MAP OF PALESTINE
Madaba map; Map of Madaba; Madaba mosaic map; Madeba map; Madaba Mosaic Map
The Madaba Map, also known as the Madaba Mosaic Map, is part of a floor mosaic in the early Byzantine church of Saint George in Madaba, Jordan. The Madaba Map depicts part of the Middle East and contains the oldest surviving original cartographic depiction of the Holy Land and especially Jerusalem.
Pictorial map         
  • ''Gangland Chicago'' by Bruce Roberts, 1931
  • "Yosemite" (Jo Mora, 1931)
  • Pictorial map of [[Paris]] by [[Claes Jansz. Visscher]]
  • Colorful quirky map of Omey Island created by Irish artist Sean Corcoran, 2009
  • A 19th-century pictorial map plate of a rural and industrial area in [[St. Louis]]
  • [[Tampa Bay]] aerial view map by [[Maria Rabinky]], 2008
  • ''The Man of Commerce'', 1889, Rand McNally and Company
MAP THAT USES PICTURES TO REPRESENT FEATURES
Pictorial maps; Geopictorial maps; Panoramic maps; Bird's eye view maps; Illustrated maps; Cartoon maps; Panoramic map; Illustrated map; Geopictorial map; Cartoon map; Oblique view map; Perspective maps; Pespective maps; Bird's eye view map; Bird's-eye view maps; Bird's-eye view map; Anthropomorphic maps; Picture map; Picture maps; Perspective map; Pictoral map
Pictorial maps (also known as illustrated maps, panoramic maps, perspective maps, bird’s-eye view maps, and geopictorial maps) depict a given territory with a more artistic rather than technical style. It is a type of map in contrast to road map, atlas, or topographic map.

Википедия

Valuation ring

In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D.

Given a field F, if D is a subring of F such that either x or x−1 belongs to D for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F. Since F in this case is indeed the field of fractions of D, a valuation ring for a field is a valuation ring. Another way to characterize the valuation rings of a field F is that valuation rings D of F have F as their field of fractions, and their ideals are totally ordered by inclusion; or equivalently their principal ideals are totally ordered by inclusion. In particular, every valuation ring is a local ring.

The valuation rings of a field are the maximal elements of the set of the local subrings in the field partially ordered by dominance or refinement, where

( A , m A ) {\displaystyle (A,{\mathfrak {m}}_{A})} dominates ( B , m B ) {\displaystyle (B,{\mathfrak {m}}_{B})} if A B {\displaystyle A\supseteq B} and m A B = m B {\displaystyle {\mathfrak {m}}_{A}\cap B={\mathfrak {m}}_{B}} .

Every local ring in a field K is dominated by some valuation ring of K.

An integral domain whose localization at any prime ideal is a valuation ring is called a Prüfer domain.